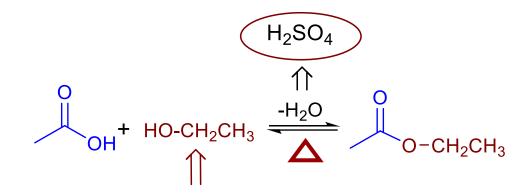


乙酸乙酯的制备

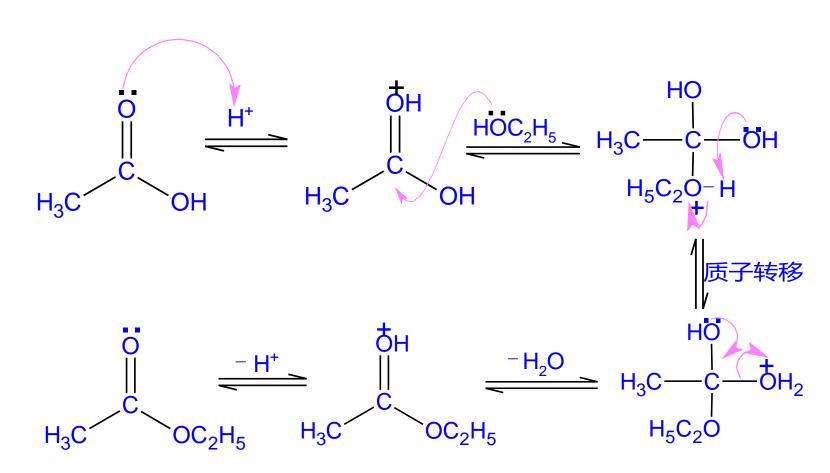
Preparation of Ethyl acetate


1. 学习由醇和羧酸制备羧酸酯的原理和方法以及影响反应速度的因素。

2. 熟练掌握萃取、洗涤、干燥、蒸馏等基本操作。

制备酯的常用方法

二、实验原理


羧酸和醇反应制备酯的原理:

- 1. 由于酯化反应是可逆反应,为提高酯的产率,采用增加乙醇的用量以及不断将产物乙酸乙酯和水蒸出的措施,使平衡右移。
- 2. 反应中, 浓硫酸除起催化作用外, 还吸收反应生成的水, 有利于的生成。

反应机理

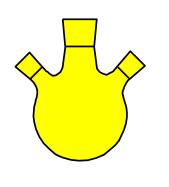
三、实验试剂

冰醋酸 12 mL (12.6 g, 0.21 mol) 1.00 equiv.

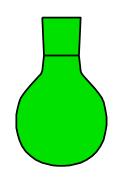
无水乙醇 24 mL (19 g, 0.41 mol) 1.97 equiv.

浓硫酸 12 mL

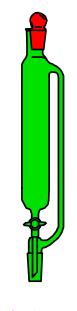
饱和碳酸钠溶液 (~10 mL) 饱和食盐水 (10 mL)


饱和氯化钙溶液 (15 mL) 无水硫酸镁 (适量)

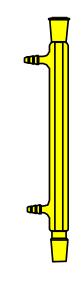
名称	分子量	性状	比重	熔点。	沸点 °C	溶解度:克/100mL溶剂		
11 17						水	醇	醚
冰醋酸	60.05	无色液体	1.049	16.6	118.1	∞	∞	∞
乙醇	46.07	无色液体	0.780	-114.5	78.4	∞	∞	∞
乙酸乙酯	88.10	无色液体	0.905	-83.6	77.3	8.5	∞	∞


共沸物沸点(°C)	共沸物组成(%)					
共外物が思くした	乙酸乙酯	乙醇	水			
70.2	82.6	8.4	9			
70.4	91.9		8.1			
71.8	69.0	31.0				

四、实验仪器

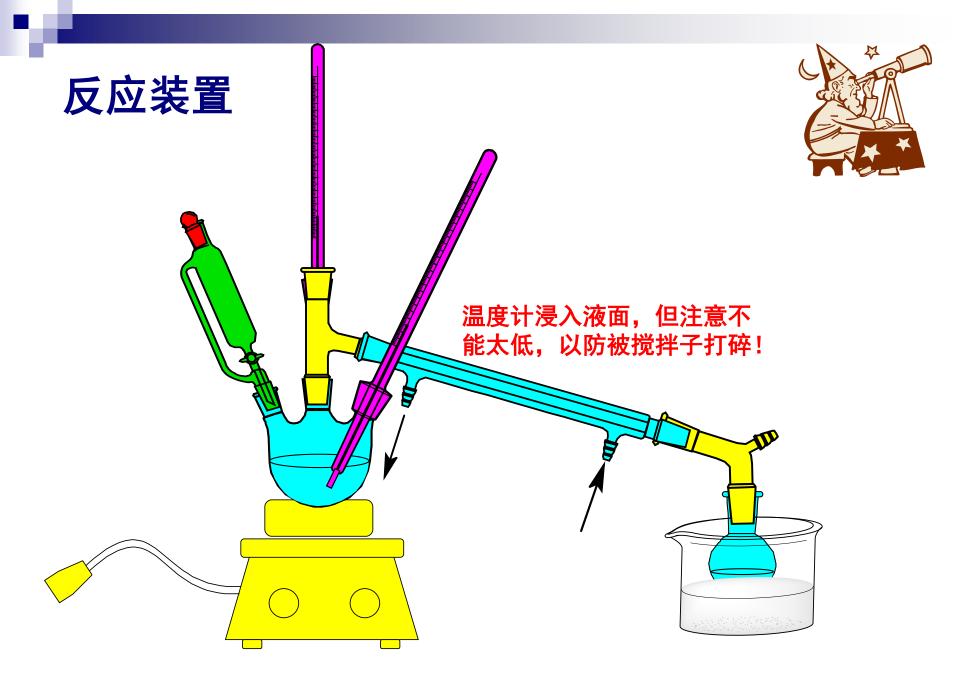


圆底烧瓶

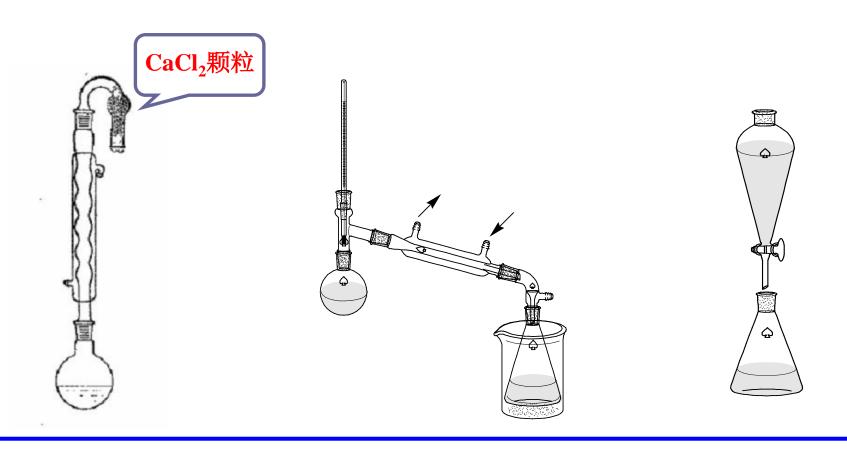


真空尾接管

滴液漏斗


直形冷凝管

温度计

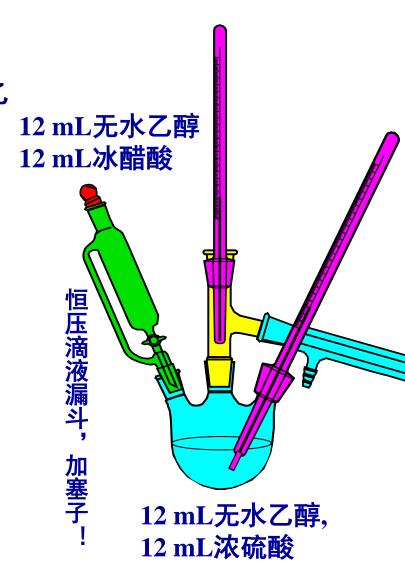


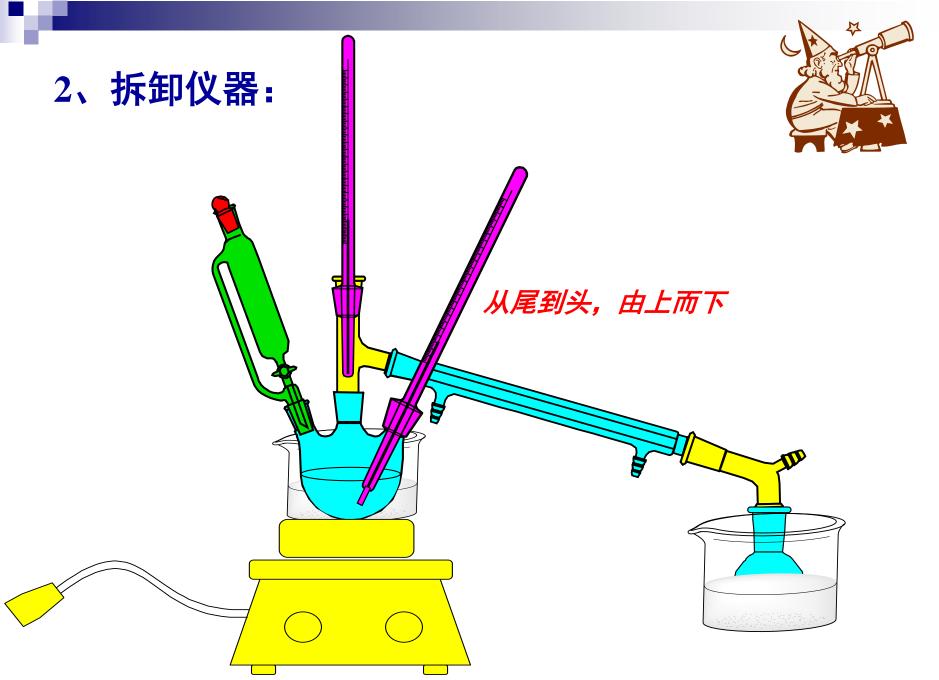
分液漏斗

由下而上,从左到右

另一种实验装置

带有干燥管的回流装置

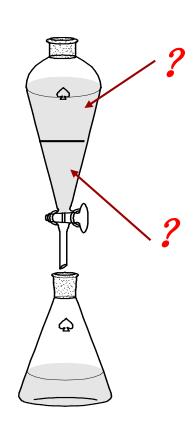

蒸馏装置

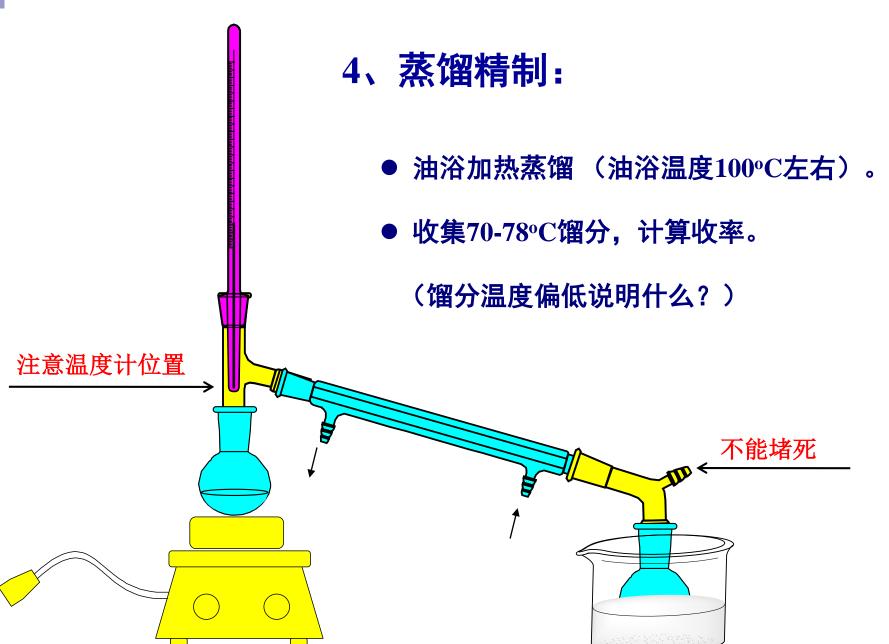

萃取/洗涤装置

五、实验步骤

1、加料反应:

- 在100 mL三口瓶中加入9.5 g (12 mL)无水乙醇, 搅拌下缓慢加入12 mL浓硫酸(冰浴)。
- 滴液漏斗中加入9.5 g (12 mL)无水乙醇和 12.6 g (12 mL)冰醋酸的混合液。
- 先滴加3-4 mL混合液,慢慢加热反应液至 120°C左右,此时应有液体蒸出。
- 滴加剩余混合液,控制滴加速度与蒸出速度相同,温度120-140°C。
- 滴加完毕,继续加热至蒸馏头处温度计温度下降。





(成分: EtOAc, CH₃CH₂OH, CH₃COOH, H₃O⁺)

- 在搅拌下,慢慢加入5~10 mL饱和Na₂CO₃溶液除酸, 直至无CO₂气体。
- 移至分液漏斗,分出水层,有机相用10 mL饱和食盐水洗涤以降低有机物中水的含量,分液后再用15 mL(5 mL×3)饱和CaCl,溶液洗涤除醇。
- 分去水层(静置后再分液一次),有机层移至具塞 锥形瓶,用适量无水MgSO₄干燥10-15 min。
- 粗产品滤入25 mL圆底烧瓶,准备蒸馏。

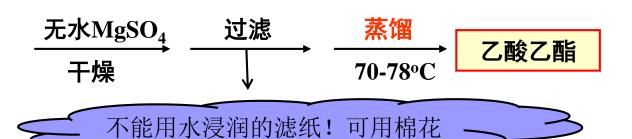
使用分液漏斗时 注意放气! 切勿对人!!

实验流程

先滴加12mL乙醇和 12mL冰醋酸混合液 3-4mL,慢慢加热至 120°C左右,再滴加 剩余混合液

滴加完毕,

升温至140°C


粗产品

如何判断加多少?

饱和Na₂CO₃溶液 5-10 mL

12 mL无水乙醇 12 mL浓硫酸

水相 分液 饱和食盐水 饱和CaCl₂溶液 有机相 10 mL $5 \,\mathrm{mL} \times 3$

六、注意事项

1. 使用浓硫酸时注意安全,戴手套,搅拌下滴加,容器及时处理。

★紧急处理:接触少量浓硫酸可直接大量水清洗;

接触大量浓硫酸先用干抹布擦拭,再用大量水冲洗。

2. 反应温度不应过高(<140°C)。

90-120
$$^{\circ}$$
C $_{R}$ $_{OH}$ $_{HO-R'}$ $_{HO}$ $_{H$

15

六、注意事项

- 3. 洗涤时注意放气。放气时切勿对人!
- 4. 尽量将有机层中的乙醇除尽和充分干燥,否则形成 低沸点共沸混合物,影响酯的质量。
- 5. 干燥剂的使用量应适当。
- 6. 废液严禁倒入下水道。
- 7. 滴液漏斗可去领取,用后归还。

- 1. 酯化反应有什么特点?本实验如何创造条件使酯化反应尽量向生成物方向进行?
- 2. 在纯化过程中,饱和 Na_2CO_3 溶液、饱和食盐水、饱和 $CaCl_2$ 溶液、无水 $MgSO_4$ 分别除去什么杂质?
- 3. 本实验可能会有哪些副反应发生?

